skip to main content


Search for: All records

Creators/Authors contains: "Ma, Xuejian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 μs and 10 μs correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3~5 μm) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.

     
    more » « less
  2. null (Ed.)
  3. Significance

    Defects in two-dimensional (2D) transition-metal dichalcogenides play a crucial role in controlling the spatiotemporal dynamics of photogenerated charge carriers, which remain poorly understood to date. In this paper, the defect-mediated carrier diffusion and recombination in WS2monolayers are quantitatively investigated by laser-illuminated microwave impedance microscopy. Surprisingly, the photoresponse is in general stronger in the more disordered regions and samples. Such counterintuitive observations are reconciled by spatiotemporally resolved experiments, which indicate that the electron lifetime is prolonged due to the slow release of holes from the trap states. The results reveal the intrinsic time and length scales of photocarriers in van der Waals materials, providing the guidance for implementing nanooptoelectronic devices based on 2D semiconductors.

     
    more » « less